A test-retest study on Parkinson's PPMI dataset yields statistically significant white matter fascicles

نویسندگان

  • Martin Cousineau
  • Pierre-Marc Jodoin
  • Félix C. Morency
  • Verena Rozanski
  • Marilyn Grand’Maison
  • Barry J. Bedell
  • Maxime Descoteaux
چکیده

In this work, we propose a diffusion MRI protocol for mining Parkinson's disease diffusion MRI datasets and recover robust disease-specific biomarkers. Using advanced high angular resolution diffusion imaging (HARDI) crossing fiber modeling and tractography robust to partial volume effects, we automatically dissected 50 white matter (WM) fascicles. These fascicles connect deep nuclei (thalamus, putamen, pallidum) to different cortical functional areas (associative, motor, sensorimotor, limbic), basal forebrain and substantia nigra. Then, among these 50 candidate WM fascicles, only the ones that passed a test-retest reproducibility procedure qualified for further tractometry analysis. Leveraging the unique 2-timepoints test-retest Parkinson's Progression Markers Initiative (PPMI) dataset of over 600 subjects, we found statistically significant differences in tract profiles along the subcortico-cortical pathways between Parkinson's disease patients and healthy controls. In particular, significant increases in FA, apparent fiber density, tract-density and generalized FA were detected in some locations of the nigro-subthalamo-putaminal-thalamo-cortical pathway. This connection is one of the major motor circuits balancing the coordination of motor output. Detailed and quantifiable knowledge on WM fascicles in these areas is thus essential to improve the quality and outcome of Deep Brain Stimulation, and to target new WM locations for investigation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

White matter hyperintensities are more highly associated with preclinical Alzheimer's disease than imaging and cognitive markers of neurodegeneration

INTRODUCTION Cognitive tests and nonamyloid imaging biomarkers do not consistently identify preclinical AD. The objective of this study was to evaluate whether white matter hyperintensity (WMH) volume, a cerebrovascular disease marker, is more associated with preclinical AD than conventional AD biomarkers and cognitive tests. METHODS Elderly controls enrolled in the Alzheimer's Disease Neuroi...

متن کامل

Evaluating the Accuracy of Diffusion MRI Models in White Matter

Models of diffusion MRI within a voxel are useful for making inferences about the properties of the tissue and inferring fiber orientation distribution used by tractography algorithms. A useful model must fit the data accurately. However, evaluations of model-accuracy of commonly used models have not been published before. Here, we evaluate model-accuracy of the two main classes of diffusion MR...

متن کامل

Correction: Evaluating the Accuracy of Diffusion MRI Models in White Matter

Models of diffusion MRI within a voxel are useful for making inferences about the properties of the tissue and inferring fiber orientation distribution used by tractography algorithms. A useful model must fit the data accurately. However, evaluations of model-accuracy of commonly used models have not been published before. Here, we evaluate model-accuracy of the two main classes of diffusion MR...

متن کامل

Diffusion tensor studies and voxel-based morphometry of the temporal lobe to determine the cognitive prognosis in cases of Alzheimer’s disease and mild cognitive impairment: Do white matter changes precede gray matter changes?

PURPOSE The purpose of the current study was to assess the feasibility of diffusion tensor imaging (DTI) parameters for determining the prognosis of Alzheimer's disease (AD). We also analyzed the correlation among DTI, voxel-based morphometry (VBM), and results of the mini-mental state examination (MMSE). METHODS The subjects of this prospective study were patients with AD and mild cognitive ...

متن کامل

Predictive Big Data Analytics: A Study of Parkinson’s Disease Using Large, Complex, Heterogeneous, Incongruent, Multi-Source and Incomplete Observations

BACKGROUND A unique archive of Big Data on Parkinson's Disease is collected, managed and disseminated by the Parkinson's Progression Markers Initiative (PPMI). The integration of such complex and heterogeneous Big Data from multiple sources offers unparalleled opportunities to study the early stages of prevalent neurodegenerative processes, track their progression and quickly identify the effic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2017